
Supercomputing Engine Technology (SET)

Accelerate Your Software by Parallelizing for

Multi-Core Machines or Supercomputers
without Source Code Modification 

Arc jet simulation of a thermal protection system (TPS) sample wedge in an arc jet flow. Such simu-
lations may use upwards of 180 processors for up to 5 hours, and several of these solutions are often 
necessary to match the experimental measurements. 
Credit: NASA Exploration Systems Mission Directorate, Principle Investigator, Michael J. Wright

Modular Programming

Modular programming is a software 
design technique where software is 
composed from separate parts, called 
modules.  Conceptually, modules rep-

resent clearly organizing its solution 
into isolated components, improving 
the maintainability, and enforcing 
logical boundaries between compo-
nents.

Page 1 of 5



Modules are typically assembled into a 
program using interfaces.
A module interface expresses the ele-
ments that are provided and required 
by the module. The elements defined 
in the interface are detectable by other 
modules. The implementation contains 
the working code that corresponds to 
the elements declared in the interface.

In module programming, Front End 
(FE) and Back End (BE) are terms 
that refer, respectively, to the user-
facing and the purely-computational 
portions of a calculation. The FE is re-
sponsible for collecting input in vari-
ous forms from the user and process-
ing it to conform to a specification the 
BE can use. The FE is a kind of inter-
face between the user and the BE (The 
“user” may be a human being or an-
other high-level program.)

Some programs separate the FE and 
BE into two applications.  A FE appli-
cation is one that users interact with 
directly.  The BE application may in-
teract directly with the FE, but it is 
possible for the BE to be called by an 
intermediate program that mediates 
FE and BE activities.

Modular programming is a good prac-
tice when writing more reliable appli-
cation software.  It enables faster and 
easier development of application 

software, faster and easier testing of 
the application, and improved mainte-
nance of its operation.  Most long-term 
software projects implement a module 
programming approach rather than 
the monolithic approach, where the 
smallest piece of software is the whole 
application.

Parallelizing a Modular Program 

the Standard Way

The design principles of modular pro-
gramming apply directly to parallel 
programming. However, parallelism 
also introduces additional issues. A 
sequential module encapsulates the 
code that implements the functions 
provided by the module’s interface and 
the data structures accessed by those 
functions. In parallel programming, 
not only code and data should be con-
sidered but also the tasks created by a 
module, the way in which data struc-
tures are partitioned and mapped to 
processors, and internal processors 
communication structures. These 
processes are quite complex and often 
involve re-writing large part of the 
original code.

Parallelizing a Modular Program 

the SET Way

SET is a unique technology that sig-
nificantly reduces the complexity of 
parallelizing modular programs. SET 
works "In Between" modules, inter-

Page 2 of 5



cepting command flow in the modules' 
link. By providing an independent in-
frastructure layer (Pooch clustering 
solution) that covers partitioning and 
mapping data to processors, and pro-
viding internal MPI-based communi-
cation structure to processors that 
handle the parallel tasks, a great deal 
of complexity is taken away from par-
allelizing the sequential code. In addi-
tion, there are no modifications re-
quired for the original sequential code 
since SET can automatically provide 

its own instances of modules required 
to perform the parallel operations, 
without the sequential code even being 
"aware" of the parallelization.  Porting 
a sequential program to work with 
SET is done by relatively simple glue 
code, where SET is instructed to inter-
cept commands that flow between 
modules, depending on the command 
type.

Figure 1: Parallelizing Wolfram Research’s Mathematica, where Semath 

modules are the silver spheres.

Page 3 of 5



SET Proof of Concept -

Parallelizing Wolfram Research’s 

Mathematica

As a SET proof of concept, we have de-
cided to provide Wolfram Research’s 
Mathematica with the ability to have a 
supercomputing-like parallelization in-
frastructure (MPI-based all-to-all com-
munication between its computational 
kernels). Mathematica is a proprietary 
program, which does not allowed any 
modification of its source code, and it is 
an excellent example of modular pro-
gramming. Mathematica has three 
parts. It has a front end (FE) module 
for user interface, a back end (BE) 
module which performs the calculations 
(Kernel), and a communication link be-
tween the FE and BE, called MathLink.

Although Mathematica has a version of 
limited grid-based parallel computing 
(A relatively small subset of true super-
computing), we have instead decided to 
apply SET to Mathematica itself and 
turn it into a full-featured supercom-
puter application. The name we gave 
this effort was SEM - Supercomputing 
Engine for Mathematica.

We began by implementing an MPI li-
brary within the Mathematica envi-
ronment, an industry first. Applying 
the paradigm of distributed-memory 
MPI to Mathematica, SET launches 

multiple instances of the Mathematica 
kernel, each under the control of an in-
stance of SET’s Semath module. (See 
Figure 1 in page 3, and Figure 2 in page 
5). These Semath modules construct 
and use a low-level MPI network com-
munications layer. Expressions trans-
mitted from any kernel are intercepted 
by Semath, forwarded between Se-
math’s using the low-level MPI, then 
recreated in the target kernel else-
where on the cluster. For the Mathe-
matica environment, this process cre-
ates the illusion that Mathematica is 
calling MPI, but in fact SET is trans-
mitting the expression as data using 
the low-level MPI.

SEM intercepts commands from the FE 
and forwards them via the Semath’s on 
the cluster to all the kernels. The ker-
nels then perform their work and coor-
dinate using MPI like modern super-
computers, and the FE can display the 
results.

SEM’s API is divided into three catego-
ries:

• Low-level: Point-to-point trans-
missions, synchronous and asyn-
chronous. 

• Collective: Communications in-
volving any subset of processors.

• High-level communications: Im-
plement commonly used tasks, be-

Page 4 of 5



haviors, and communications pat-
terns present across parallel com-
puting.

“Everything is an Expression” in 
Mathematica, so subroutines, functions, 
graphics, sounds, and equations can be 
sent via MPI, not just data. An industry 
first, SEM provides Mathematica with 
unprecedented capabilities thanks to 
SET. The porting effort of Mathematica 
to SET took one (1) skilled man/month.

Figure 2: Semath modules Structure

Additional Implementations and 

Future of SET

Applying SET to Mathematica (SEM) is 
only one example of what SET can do. 

In embedded systems or large pro-
grams, for example, a single computa-
tional module in the work flow can slow 
the whole system due to slow process-
ing speeds.  This module can be locally 
ports to SET for parallelization, there-
fore improving performance of the 
whole program or workflow, without 
modification to the module's source 
code.   Other implementations of SET 
can accelerate video compression, Fi-
nite Element Method calculations, etc.

With additional capital investments, we 
seek to take SET to the next level and 
provide software vendors and research-
ers with a toolkit which will provide a 
relatively quick and efficient way to 
port their sequential software to any 
parallel platform - multi-core machines 
or a supercomputer - without modifica-
tion to the sequential code.  This can 
simplify and speed up development of 
new programs tremendously since there 
is no need to design and debug a paral-
lel version of a program from scratch. 
Making a sequential program work 
flawlessly is a very important first step. 
With the application of SET, the se-
quential program (or particularly slow 
portions of it) can be then easily ported 
to SET and take advantage of multi-
core or supercomputing in a fraction of 
time it would take to parallelize it the 
standard way.

Page 5 of 5


