
「心の計算」最少モデル

(* =========================*)

(*Basic settings*)
(* =========================*)

ClearAll[nPhys, nCtx, nMem, nRep, nAct, actions, wEval, encode,
evaluate, select, piMem, embedMRAR, learn, rewardFunction, stepOnce];

(*次元の設定：必要なら後で変えてOK*)
nPhys = 2; (*Phys の次元*)

nCtx = 2; (*Ctx の次元*)

nMem = 2; (*Mem の次元*)

nRep = nPhys + nCtx + nMem;
nAct = 3; (*行動の種類*)

(*行動ラベル*)

actions = {"Avoid", "Approach", "Wait"};

(*評価用の重み（例としてランダム）*)

SeedRandom[1];
wEval = RandomReal[{-1, 1}, {nRep, nAct}];

(* =========================*)

(*1. encode:Phys×Ctx×Mem→Rep*)
(* =========================*)

encode[phys_List, ctx_List, mem_List] /; Length[phys] ⩵ nPhys &&
Length[ctx] ⩵ nCtx && Length[mem] ⩵ nMem := Join[phys, ctx, mem];

(* =========================*)

(*2. evaluate:Rep→Val*)
(*Val は「各行動のスカラー価値」のリスト*)

(* =========================*)

evaluate[rep_List] /; Length[rep] ⩵ nRep :=
rep.wEval; (*長さ nAct のベクトル*)

(* =========================*)

(*3. select:Val→Act*)
(*Val を受け取って「1つの行動」を選ぶ*)

(* =========================*)

select[val_List] /; Length[val] ⩵ nAct :=
Module[{idx},
idx = First@Ordering[val, -1]; (*ArgMax*)
"Index" → idx, "Label" → actions〚idx〛];

(* =========================*)

(*4. π_Mem:Phys×Ctx×Mem→Mem*)
(*生理・文脈からの「素の」記憶更新（前処理）*)

2 minimum_mind_model.nb

(* =========================*)

piMem[phys_List, ctx_List, mem_List] /;
Length[phys] ⩵ nPhys && Length[ctx] ⩵ nCtx && Length[mem] ⩵ nMem :=

Module{drift}, (*例：Ctx の平均に応じたドリフトを少し加えるだけの素朴モデル*)

drift = 0.1 Mean[ctx];
mem + drift

;

(* =========================*)

(*5. ι:Mem→Mem×Rep×Act×Rew*)
(*MRAR=Mem×Rep×Act×Rew に埋め込む役割*)

(*ここでは act,rew は引数で受け取る形にする*)

(* =========================*)

embedMRAR[mem_List, rep_List, act_, rew_] :=
{mem, rep, act, rew};

(* =========================*)

(*6. learn:Mem×Rep×Act×Rew→Mem*)
(*実際の学習規則（ここでは超単純な TD もどき）*)

(* =========================*)

learn[mem_List, rep_List, actAssoc_Association, rew_?NumericQ] /;
Length[mem] ⩵ nMem && Length[rep] ⩵ nRep :=

Module{alpha = 0.3, idx, tdError},

idx = actAssoc["Index"];
(*rep と行動インデックスから「期待価値」を作る例（かなり素朴）*)

tdError = rew - (rep.wEval)〚idx〛;
(*mem の一部を誤差方向に更新するだけの極小モデル*)

mem + alpha tdError Table[1., {nMem}]
;

(* =========================*)

(*報酬関数 Rew:Phys×Ctx×Act→R*)
(*例：Approach が報酬を得やすいが、Phys/Ctx で変動*)

(* =========================*)

rewardFunction[phys_List, ctx_List, actAssoc_Association] :=
Module[{idx = actAssoc["Index"], base, arousal, difficulty},
arousal = phys〚1〛;
difficulty = ctx〚1〛;
base = Which[

idx ⩵ 1, -0.2 + 0.3 difficulty, (*Avoid*)
idx ⩵ 2, 0.5 + 0.5 arousal - 0.3 difficulty, (*Approach*)
idx ⩵ 3, 0.1 - 0.2 arousal, (*Wait*)
True, 0.];

base
];

minimum_mind_model.nb 3

(* =========================*)

(*1ステップの「心→意識→行動＋学習」ループ*)

(* =========================*)stepOnce[state_Association] :=
Module{phys, ctx, mem, rep, val, act, memPrior, rew, memNew, mrar},

(*現在の状態を取り出し*)

phys = state["Phys"];
ctx = state["Ctx"];
mem = state["Mem"];

(*上段：心→意識→行動*)

rep = encode[phys, ctx, mem];
val = evaluate[rep];
act = select[val];

(*下段：記憶の前更新 π_Mem*)
memPrior = piMem[phys, ctx, mem];

(*報酬の計算*)

rew = rewardFunction[phys, ctx, act];

(*MRAR への埋め込み ι*)

mrar = embedMRAR[memPrior, rep, act, rew];

(*learn による最終的な記憶更新*)

memNew = learn @@ mrar;



"Phys" → phys,
"Ctx" → ctx,
"Mem" → memNew,
"Rep" → rep,
"Val" → val,
"Act" → act,
"Rew" → rew

;

In [] := (* =========================*)

(*初期状態の例とテスト*)

(* =========================*)

initialState = 

"Phys" → {0.5, 0.2}, (*例：適度な覚醒、やや低い疲労 など*)

"Ctx" → {0.3, 0.7}, (*例：課題難度0.3,社会的圧力0.7 など*)

"Mem" → {0., 0.} (*例：ニュートラルな記憶状態*);

4 minimum_mind_model.nb

In [] := (*1ステップ回してみる*)

step1 = stepOnce[initialState]
Out[]=

Phys → {0.5, 0.2}, Ctx → {0.3, 0.7}, Mem → {-0.132557, -0.132557},
Rep → {0.5, 0.2, 0.3, 0.7, 0., 0.}, Val → {0.498522, -1.05679, 0.401545},
Act → Index → 1, Label → Avoid, Rew → -0.11

In [] := step1["Act"]
Out[]=

Index → 1, Label → Avoid

In [] := step1["Rew"]
Out[]=

-0.11

In [] := step1["Mem"]
Out[]=

{-0.132557, -0.132557}

step1["Val"](* actions={"Avoid","Approach","Wait"}*)
Out[]=

{0.498522, -1.05679, 0.401545}

葛藤度の可視化
In [] := (*Val={v1,v2,v3,...}*)

ClearAll[conflictMargin, conflictEntropy];

(*1位と2位の差*)

conflictMargin[val_List] /; Length[val] ≥ 2 :=
Module[{sorted},
sorted = Reverse@Sort[val];
sorted〚1〛 - sorted〚2〛

];

conflictMargin[val_List] /; Length[val] < 2 := 0.;

(*softmax エントロピー*)

conflictEntropy[val_List, beta_ : 3.0] :=
Module[{z, p},
z = Exp[beta val];
p = z/ Total[z];
-Total[p Log[p]]

];

minimum_mind_model.nb 5

In [] := ClearAll[traceConflict];

traceConflict[state0_Association, T_Integer?Positive, beta_ : 3.0] :=
Module{state = state0, log},

log = Reap[
Do[
state = stepOnce[state];
With[{val = state["Val"], act = state["Act"], rew = state["Rew"]},
Sow[


"t" → t,
"Val" → val,
"Margin" → conflictMargin[val],
"Entropy" → conflictEntropy[val, beta],
"ActLabel" → act["Label"],
"Rew" → rew


]

],
{t, 1, T}

]

];

(*Reap の戻り値から Sow されたリストだけ取り出す*)

If[Length[log〚2〛] > 0, log〚2, 1〛, {}]

;

In [] := data = traceConflict[initialState, 50]; (*50ステップ回す*)

Length[data] (* →50*)
First[data] (*1ステップ目のログ内容を確認*)

Out[]=

50

Out[]=

t → 1, Val → {0.498522, -1.05679, 0.401545},
Margin → 0.0969772, Entropy → 0.712373, ActLabel → Avoid, Rew → -0.11

各行動の Val をプロット

6 minimum_mind_model.nb

In [] := vals = data〚All, "Val"〛; (*各ステップの {v1,v2,v3}*)

valSeries = Transpose[vals]; (*全ステップのv1列,v2列,v3列*)

ListLinePlot[
valSeries,
PlotLegends → actions,
AxesLabel → {"step", "Val"},
PlotLabel → "Action values over time"

]

Out[]=

10 20 30 40 50
step

-1.0

-0.5

0.5

Val
Action values over time

Avoid

Approach

Wait

葛藤度（margin or entropy）のプロット
margins = data〚All, "Margin"〛;
entropies = data〚All, "Entropy"〛;

ListLinePlot[
{margins, entropies},
PlotLegends → {"Margin (small = conflict)", "Entropy (large = conflict)"},
AxesLabel → {"step", "conflict"},
PlotLabel → "Conflict over time"

]
Out[]=

10 20 30 40 50
step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

conflict
Conflict over time

Margin (small = conflict)

Entropy (large = conflict)

minimum_mind_model.nb 7

