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Abstract

This report examines the role of machine learning in AI systems, particularly in large-
scale LLM training and deployment, where data alignment and output evaluation have become
primary bottlenecks; while LLMs excel at generation and semantic representation, they are
computationally inefficient and often unstable as large-scale evaluators, motivating a practical
evaluation architecture in which semantic embedding models and lightweight neural classifiers
are combined with gradient-boosted decision trees (GBDT), often instantiated as LightGBM,
to formalize similarity, distance, and consistency measures derived from embedding spaces and
to define relevance, safety, and usefulness as multi-objective evaluation functions, with detailed
analysis of large-scale deployments demonstrating why GBDT-based integration layers remain
indispensable in modern LLM alignment pipelines.
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1 Scope and Assumptions
1.1 Problem Setting
We consider pipelines that operate at industrial scale under two practical constraints:
o Scale: millions to billions of items (texts, prompts, responses, logs) per day.
o Speed: low latency for online decisions, and/or high throughput for offline filtering.

The pipeline objective is to support:

1. Front-end data alignment for training (selection, filtering, prioritization, relabeling).

2. Output evaluation for deployment (accept/reject, ranking, routing, escalation).
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1.2 Division of Labor

A consistent engineering principle is to separate:
o Semantic representation and local judgments: embeddings or lightweight transformers.
» Global integration and decisions: GBDT (often Light GBM) as an “evaluation integrator.”

This separation is motivated by cost and stability: computing embeddings or transformer scores
can be amortized or staged, while GBDT inference remains extremely fast on CPU and robust under
heterogeneous features.

2 Mathematical Foundations

2.1 Embedding Representation

Let x denote a text instance (prompt, response, document chunk, product description, or log
snippet). An embedding model E maps z to a vector

z = F(z) € R%

We assume FE is fixed during evaluation (trained beforehand) and used as a semantic coordinate
system.

2.2 Similarity and Distance

Given two vectors zi, 29 € R

Cosine similarity

T
. VAR
sim(zy,29) = ——m——.
122) = o Tl
Euclidean distance
diSt(Zl,Zg) = ||Z1 — Z2||2.

Mahalanobis distance When the embedding distribution is anisotropic, use

distps(z1,29) = \/(zl —2z9) 'Yz — 29),

where ¥ is an estimated covariance (global or conditioned on segment/domain).

2.3 Consistency Scores (Stability of Meaning)

Consistency measures whether meaning is stable under controlled perturbations. Let a base input
u be perturbed in K ways, generating texts {x(k)}szl (e.g., prompt paraphrases, different decoding
seeds, temperature variants). Let z*) = E(z(*)).

Pairwise dispersion

1 N
= ist(z® z0)
D K(K—l);dlSt(z ,zV).



Consistency as inverse dispersion

D

C =exp(—AD) or 0:1_D+T’

where A, 7 > 0 calibrate scale. High C implies stable semantics; low C' indicates semantic instability,
often correlated with hallucination, ambiguity, or poor controllability.

2.4 From Embedding Geometry to Features

Embedding geometry is not directly a decision. Instead, we derive features from it.
Given a pair (query ¢, response r), define:

Gem(4,7) = [sim(E(g), E(r)). dist(E(q), E(r)), distar (B(q), (1), Clq.7), -..|.

This vector is then combined with additional signals such as length, repetition rate, policy flags, or
transformer-based classifier scores.

2.5 Objectives: Relevance, Safety, Usefulness

We formalize three core objectives.

2.5.1 Relevance

Relevance measures whether a response addresses the query intent. Let z, = E(q) and z, = E(r).
A base relevance signal may be a monotone transform of similarity:

Ry = fr (Sim(zqa Zr))v

where fr is calibrated (e.g., isotonic regression or logistic calibration) from labeled data. More
generally, relevance can incorporate domain signals m:

R = fR(¢emb(Q7T)7 m)

2.5.2 Safety

Safety measures compliance with constraints. Let s be a feature vector of safety-related signals:
toxicity score, self-harm indicators, policy-rule flags, classifier outputs, etc. Define

S =1 — P(violation | s).

In practice, P(-) may come from a lightweight transformer classifier, a ruleset, or an ensemble;
GBDT can integrate them with other signals.

2.5.3 Usefulness

Usefulness measures pragmatic value beyond relevance: completeness, clarity, actionability, and
user satisfaction proxy signals. Let u represent usefulness features: length ¢, structure markers,
coverage estimates, citations, and interaction feedback. Define

U= fU((z)emb(qa 7’), u, m)



2.6 Multi-Objective Integration and Decision Rules

A system typically requires a single scalar score plus explicit constraints.

Score
J = g(R7S7U’W)?

where ¢ may be a learned integrator and w are weights or parameters. A common approach is to
learn J directly as a supervised model.

Hard constraints Some policies are “non-negotiable”:
Reject if P(violation | s) > ¢ or if a rule flag triggers.
GBDT is usually used for the soft integration layer, while hard rules remain separate.

2.7 GBDT (LightGBM) as an Integrator

Let the complete feature vector be
X = [d)emb> S, u, m, .. ]
A GBDT model represents:
T
F(x) =) ah(x),
t=1
with trees h; and weights a.

Interpretation F' approximates a decision function:
e as a regressor to predict a human preference score,
o as a classifier to predict accept/reject,

e as a ranker to compare candidates.

Why GBDT fits the role GBDT integrates heterogeneous features, handles missingness, sup-
ports rapid retraining, and yields feature importance for monitoring and audit.

3 Example A-1: Embedding Geometry for Signals; Light GBM for
Final Objectives

3.1 Embedding Role: Similarity, Distance, Consistency
In Example A-1, the embedding model provides the semantic coordinate system. The pipeline

computes:

Similarity
simg, = sim(E(q), E(r)).



Distance (absolute semantic deviation)

dyr = dist(E(q), B(r)),  d = distar(E(q), E(r).

Consistency score (stability) Cenerate K responses {r*)} under controlled perturbations.
Let z®) = E(r(*)) and define dispersion D and consistency C' as:

1 . .
- - (@) _ () - —
D_K(K_l)ZHZl Z]H27 C_eXp( /\D)
7]
Interpretation: high C' suggests robust semantic behavior; low C suggests instability, ambiguity, or
hallucination risk.
3.2 LightGBM Role: Relevance, Safety, Usefulness
In Example A-1, Light GBM integrates these embedding-derived features with others.

Relevance as a learned function

R = fr(simg, dgr, dpt,m, . ..).

Even when simg, is high, relevance may degrade if the response is generic or fails to satisfy specific

constraints; thus R is not simply similarity.

Safety as a probabilistic compliance score Let s contain safety classifier outputs and rule
flags.
S =1 — P(violation | s, pemp, m).

Embedding-derived distances can be included because out-of-distribution semantics often correlate

with policy boundary issues in practice.

Usefulness as a calibrated utility proxy Let u include structural and interaction signals
(length, format, coverage).

U= fU(¢emb> u, m)

Integration and decision LightGBM can either predict (R, S, U) separately or directly output
a joint score J:
J = F(x).

A common policy is:

Accept if S > dg and J > §j, else reject or route to Stage 2.

4 Example A-2: Feature Derivation from Text/Product/Logs and
GBDT Decisions

4.1 Embedding Role: Deriving Features from Text, Descriptions, and Logs

Example A-2 begins from heterogeneous textual sources:



o user text (queries, messages),
o product descriptions (titles, attributes, reviews),
o operational logs (clicks, dwell time summaries, user feedback text).

We embed each component:

where p denotes product description text and ¢ denotes a log-derived text snippet.
We then compute derived features:

Gemb = |sim(zg, zp), dist(zq,zp), sim(zq,2z¢), C, ...|.

Stability in a commerce-like context Consistency can be measured across multiple para-
phrases of product descriptions or across multiple generated summaries. The same dispersion-based
definitions apply.

4.2 LightGBM Role: Display/Hide and Retraining Selection

From the derived features and additional signals (price, category, user segment), Light GBM pro-
duces operational decisions:

Display vs. hide Define a visibility decision:
Yshow = ]I[F(X> > 5]7

where F' is the Light GBM score and § a threshold.

Retraining selection Define a retraining selection probability:
P(select for retraining | x) = o (Firain(X)),

where Fiain is a (possibly separate) Light GBM model and o is logistic. Selection targets samples
that are informative, uncertain, or underrepresented.

5 Example A-3: Duplicate, Anomaly, and OOD Detection for
Generated Text

In Example A-3, the emphasis is not multi-objective preference scoring but quality control at scale
for generated text streams.

5.1 LightGBM Role: Duplicate Detection Features

Duplicate detection can be modeled via features such as:
e n-gram overlap ratios,

o minhash / locality-sensitive hash collision indicators,



e embedding similarity to recent outputs,
o template signatures (format markers).

Let d denote such duplication features. Light GBM outputs

P(duplicate | d) = o(Fyup(d)).

5.2 LightGBM Role: Anomaly and Out-of-Distribution Detection
Let ¢o0q include:

o embedding distance to a reference distribution,

o perplexity-like signals (if available),

 unusual length/structure statistics,

o inconsistency scores.

A LightGBM anomaly score may be:

A= Food(¢ood)~

High A triggers rejection, quarantine, or escalation to a slower evaluator.

6 Example B-1: Integrating Harmfulness, Coherence, Entailment
with GBDT

Example B-1 uses auxiliary models to compute nuanced semantic judgments, then integrates them
using GBDT.

6.1 Signals
Let:

o H = harmfulness score (higher means more harmful or higher violation risk),
o Coh = coherence score (higher means more coherent),
o Ent = entailment score (higher means more logically supported).

These can originate from classifiers, NLI models, or specialized scoring functions.

6.2 GBDT Role: Integration

GBDT learns a mapping
J =F(H,Coh,Ent,m,...)

that reflects a system-specific policy. For example, safety constraints may enforce:
Reject if H > i,

while C'oh and Ent modulate usefulness and reliability.



7 Example B-2: Transformer for Meaning; GBDT for Final Deci-
sions

7.1 Transformer Role: Document Meaning Judgment

In Example B-2, a transformer provides semantic classification or scoring;:
t=T(x),

where T' outputs probabilities or embeddings indicating meaning categories, similarity to known
templates, or semantic compliance features.

7.2 GBDT Role: Final Judgment (Importance, Risk, Recheck)
Let:

o [ = importance score,
e Risk = risk score,
e Recheck = re-verification necessity.

GBDT integrates transformer outputs with structured metadata (source, date, category):
(I, Risk, Recheck) = F(t,m,u).
Threshold policies can route decisions:

Route to human review if Risk > dr or Recheck > d¢.

8 Example C-1: Two-Stage Filtering for Massive Generated Data
Example C-1 formalizes the practical necessity of staged evaluation.
8.1 Stage 1 Role: LightGBM (Coarse, Massive)
Let x be fast features (embedding-derived, statistics, rule flags). Stage 1 uses Light GBM:
J1 = Fi(x).
Accept a fraction p (e.g., 10-20%) by thresholding J;.
8.2 Stage 2 Role: Small Model or LLM (Fine, Expensive)
For retained candidates, compute an expensive score:
Jr = G(z),
where G is a lightweight transformer cross-encoder or an LLM-as-a-judge. Final selection may

depend on (J1, Jo2):
Select if J5 > d9 and S > dg.



8.3 Why Stage 1 is essential

If Stage 2 cost is ¢ per item and Stage 1 cost is ¢; < ¢2, then total cost for N items is
Ney + (pN)ea,

preventing the infeasible cost Ncs.

9 Example C-2: Re-ranking Pipelines

Example C-2 describes ranking pipelines in retrieval and recommendation settings.

9.1 Stage 1: Candidate Generation and Coarse Ranking

Use cheap scoring;:
J1 = F1(¢emnb, BM25 signals, metadata, . . .).

9.2 Stage 2: Neural Re-ranking

Apply a more expensive cross-encoder or transformer:

Jo = G(Q? T)'

9.3 Optional Stage 3: LLM-based Judgment
When needed for high-stakes decisions:

J3 = L(q,r, context),

used only on a small subset due to cost.

10 Operational Considerations

10.1 Caching and Feature Stores

Embedding vectors and derived features should be cached and versioned. If embedding model F
changes, downstream distributions shift; monitoring is required.

10.2 Drift and Recalibration

Because prompts and models evolve, distributions drift. GBDT allows rapid retraining of integra-
tion layers while keeping F fixed. When drift exceeds tolerances, F must be updated and features
recalibrated.

10.3 Auditability and Monitoring

GBDT feature importance provides a practical handle for:
o diagnosing changes in acceptance rate,
e explaining decision patterns,

e detecting abnormal reliance on fragile signals.
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11 Data Alignment as a Front-End for LLM Training

This example focuses on data alignment as a front-end process for LLM training. The goal is not
to generate text, but to select, filter, weight, and prioritize data before it is consumed by a large
model. The alignment pipeline must operate at massive scale while remaining adaptive to changing
policies and training objectives.

11.1 Problem Setting

Let D = {(pi,y:)}}Y; denote a large pool of candidate training data, where p; is a prompt or context
and y; is a generated or collected response. Typically N ranges from millions to billions.
The alignment task is to construct a refined dataset

D* C D,
such that samples in D* satisfy quality, safety, and usefulness criteria appropriate for downstream
training.
11.2 Embedding Role: Semantic Normalization and Stability
Each pair (p;,y;) is embedded:
zp, = E(pi),  zy, = E(yi).

From these embeddings, alignment-relevant features are derived.

Semantic relevance
sim; = sim(z,,, z,,),
measuring how well the response semantically matches the prompt.
Semantic deviation
d; = dist(zy,, zy,),

used to detect off-topic or loosely related responses.

Consistency under perturbation For a fixed prompt p;, generate multiple responses {yﬁk)}le
under controlled decoding variations. Define dispersion

1
D= R & 1m0 ~nwll
J#k

and consistency
Cz' = exp(—)\Di).

Low C; indicates unstable semantics, often undesirable for training data.

11



11.3 LightGBM Role: Alignment Scoring and Selection

Embedding-derived features are combined with additional alignment signals:

o safety classifier outputs,
o rule-based policy flags,
e length and structure statistics,

 source metadata (domain, language, collection method).

Let
x; = [simy, d;, Cj, 84, 1, my).

A Light GBM model learns an alignment score:
A; = Falign(xi)y

which approximates the suitability of sample i for training.

Selection rule A basic selection policy is:
D* = {(pi,yi) €D | A; >4 N S; > s},

where S; is a safety score and § 4,05 are thresholds.

Weighted alignment Instead of hard filtering, the score A; can be used as a training weight:
w; = g(A;),

allowing the training objective to emphasize higher-quality or more informative samples.

11.4 Re-training and Curriculum Effects

Alignment scores can be recomputed periodically. As the LLM evolves, the distribution of (p;, y;)
shifts, but the embedding model and Light GBM layer can be updated independently.
This enables:

o fast adaptation of alignment criteria,
o curriculum-style training (easy to hard),

o targeted sampling of rare but valuable behaviors.

11.5 System-Level Interpretation

In this example, data alignment is not treated as a static preprocessing step. Instead, it is a
continuous, learned evaluation process.

e Embeddings provide a stable semantic coordinate system.

e LightGBM acts as a policy-driven alignment controller.

e The LLM itself remains agnostic to alignment logic.

This separation allows alignment policies to evolve rapidly without retraining the full language

model, making the approach practical at industrial scale.
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12 Conclusion

Across Examples A-1 through C-2, a consistent architecture emerges: embedding models and trans-
formers produce semantic and policy-relevant signals, while GBDT (often Light GBM) integrates
these signals into fast and robust decisions under large-scale and high-speed constraints. This hy-
brid design is not a transitional artifact but a practical structure for LLM-era alignment, filtering,

and evaluation pipelines.
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